Synthesis, characterization and in vitro antitumor activity of dimethyl-, diethyl, and di-t-butyl-tin(IV) derivatives of substituted salicylic acids

Mohammed Bouâlam,*† Rudolph Willem,‡§ Monique Biesemans,∥§ and Marcel Gielen†‡

* Université de Tétouan, Faculté des Sciences, Tétouan, Morocco, † Université Libre de Bruxelles, Chimie Organique, B-1050 Brussels, Belgium, ‡ Vrije Universiteit Brussel, Dienst AOSC, Room 8G512, Pleinlaan 2, B-1050 Brussels, Belgium, § Vrije Universiteit Brussel, Hoog Resolutie NMR Centrum, B-1050 Brussels, Belgium, and || Vrije Universiteit Brussel, Dienst ALGC, B-1050 Brussels, Belgium

The synthesis of dimethyl-, diethyl- and/or di-tbutyl-tin(IV) derivatives of substituted salicylic acids of the type a, (X-Y-2-OH-C₆H₂COO)₂SnR₂ $(X, Y=H, H; H, 5-CH_3; H, 5-Cl; H, 5-F; H,$ 3-CH₃O; H, 5-CH₃O; 3-CH₃, 6-(CH₃)₂CH; 3,5-[(CH₃),CH], **4,5-benzo**) and and ${[R_2(X-Y-2-OH-C_6H_2COO)Sn]_2O}_2$ 3-CH₃O; H, 5-CH₃O: 3-CH₃, 6-(CH₃)₂CH; 3,5-[(CH₃)₂CH]₂ and 4,5-benzo) is reported. Their characterization by ¹H, ¹³C and ¹¹⁹Sn NMR, Mössbauer and mass spectrometry is described. The in vitro antitumor activity of selected derivatives against two human tumoral cell lines, MCF-7 and WiDr, is presented.

Keywords: Diorganotin, salicylic acid, NMR, Mössbauer, antitumor

INTRODUCTION

Di-n-butyltin(IV) derivatives of substituted salicylic acids have already been reported. They showed *in vitro* antitumor activities on five human cell lines to an extent justifying them being patented. Some diorganotin(IV) derivatives of aza-, thio- and azathio-salicylic acids were also prepared and tested. Again some of them exhibited interesting *in vitro* antitumor properties. A literature review reveals that diethyltin(IV) compounds are often the most active, whereas

dimethyltin(IV) compounds are not^{4,5} amongst the diorganotin compounds tested in vivo. Therefore, we prepared some diethyltin(IV) analogs of the di-n-butyltin compounds previously synthesized in order to compare their antitumor activities in vitro against the two human tumoral cell lines MCF-7 and WiDr. Diethyltin compounds have the advantage that their proton NMR spectra reveal easily measurable ${}^{2}J$ and ${}^{3}J$ coupling constants, in contrast to di-n-butyltin compounds. Because such couplings contain useful information with regard to the coordination at tin6 and because the dimethyl- and di-t-butyltin compounds also exhibit these analogous couplings, we prepared and characterized for comparison three series of these analogs, compounds 1a and 1b (dimethyltin compounds) and 11b (di-tbutyltin compound).

RESULTS AND DISCUSSION

Synthesis, purification and Mössbauer spectral data

The compounds, prepared following Refs 1 and 2 from the diorganotin oxide and a substituted salicylic acid, are given in Fig. 1. The diorganotin disalicylates prepared are represented with a label **a**. They were obtained from the condensation of the appropriate diorganotin oxide and substituted salicylic acid in the molar ratio 1:2, as follows: 0.02 mmol of the diorganotin oxide and 0.04 mmol (compounds of type **a**) or 0.02 mmol (compounds of type **b**) of the substituted salicylic acid were refluxed in 100 cm³ ethanol and 400 cm³

^{*} To whom correspondence should be addressed at Vrije Universiteit Brussel, Dienst AOSC, Room 8G512, Pleinlaan 2, B-1050 Brussels, Beldium.

Compounds of type a

Compd	R	X	Y	
1a	Me	3-i-Pr	5-i-Pr	
2a	Et	Н	Н	
3a	Et	Н	3-MeO	
4a	Et	Н	5-MeO	
5a	Et	3-Me	6-i-Pr	
6a	Et	3-i-Pr	5-i-Pr	
7a	Et	Н	5-Me	
8a	Et	H	5- F	
9a	Et	H	5-Cl	
10a	Et	[Benzo*]		

^{*} Naphthalene compounds.

Compounds of type b

Compd	R	X	Y
1b	Me	3-i-Pr	5-i-Pr
3b	Et	H	3-MeO
4b	Et	H	5-MeO
5b	Et	3-Me	6-i-Pr
6b	Et	3-i-Pr	5-i-Pr
10b	Et	[Be	nzo*]
11b	t-Bu	Н	5-MeO

^{*} Naphthalene compounds.

Figure 1 Dimethyl-, diethyl- and di-t-butyl-tin derivatives of the substituted salicylic acids studied.

toluene. After 20 min a clear solution was obtained. The mixture was refluxed for a further 4 h. The ternary azeotrope water/ethanol/toluene

was distilled off with a Dean-Stark funnel until reduction of the total volume to one-half. The resulting solution was then evaporated under vacuum. The compound obtained was recrystallyzed from the solvent mixture given in Table 1.

In contrast, the bis(salicylatodiorganotin) oxides, labeled **b**, were obtained from a condensation in the molar ratio 1:1. As shown previously, they exist as dimers with a dioxadistannetane ring. The yields, melting points and recrystallization solvents of compounds 1a-10a, 1b, 3b-6b, 10b and 11b, together with their Mössbauer parameters, are given in Table 1.

NMR spectral data

¹H NMR

The ¹H NMR spectra of compounds **1a–10a** are given in Tables 2a and 2b; those of **1b**, **3b–6b**, **10b** and **11b** are described in Tables 2c and 2d.

The ¹H NMR spectrum has also been recorded for a DMSO solution of compound **3a**. The signals appear at 1.19 (9-H, t, 8, ${}^{3}J(Sn-H) = 157$), 1.54 (8-H, q, 8, ${}^{2}J(Sn-H) = 90$), 3.75 (3-CH₃O, s), 7.04 (4-H, d, 8), 6.73 (5-H, dd, 8, 8) and 7.39 (6-H, dd, 8, 1.5).

The ethyl groups exhibit the expected triplet and quartet with tin coupling satellites, ³J being larger than ²J, as usual. Fluorine-proton couplings are also observed in compound 8a. The isopropyl septets of compound 1a were assigned by nuclear Overhauser enhancement generated by irradiation of the appropriate aromatic neighbor protons. In compounds 6a and 1b, the assignment was done by analogy with 1a. In compounds 1a and 6a, the isochrony of the isopropyl methyl doublets is too strong for their assignment to be possible. In compound 1b, however, this could be achieved by selective irradiation of the isopropyl septet.

For compound 1b, two methyl-tin signals are observed, in agreement with the dimeric structure observed for analogous distannoxanes in the solid state as well as in chloroform solution. Indeed, this dimer contains two inequivalent pairs of organotin moieties, one involved in a dioxadistannetane four-membered ring, the other being a substituent of this ring.

Likewise, two triplets and two quartets characterize the diethyltin moieties of compounds 3b, 5b and 6b, for the same reason. Exceptionally, the inequivalence is even reflected in the resonances of the substituted salicylate in compound 3b. All

Table 1 Yields, melting points, recrystallization solvents and Mössbauer parameters (isomer shift IS, quadrupole splitting QS and line widths Γ_1 and Γ_2) of compounds **1a–10a**, **1b**, **3b–6b**, **10b** and **11b**

Compd	Yield (%)	м.р. (°с)	Recrystallization solvent	IS (mm s ⁻¹)	QS (mm s ⁻¹)	Γ_1 (mm s ⁻¹)	Γ_2 (mm s ⁻¹)
1a	85	149–150	Petrol. ether	1.31	3,43	0.90	0.88
2a	84	124-125	CHCl ₃ /hexane	1.47	3.60	0.84	0.86
3a	80	196-197	CHCl ₃ /hexane	1.56	3.88	0.88	0.93
4a	91	133-134	CHCl ₃ /EtOH	1.50	3.63	0.87	0.87
5a	76	100-101	Petrol. ether	1.33	3.41	1.08	0.94
6a	74	135-136	Petrol. ether	1.36	3.51	0.92	0.92
7a	82	170-171	CHCl ₃ /petrol. ether	1.51	3.73	0.90	0.90
8a	89	145-146	CHCl ₃ /hexane	1.52	3.68	0.82	0.76
9a	85	157-158	CHCl ₃ /hexane	1.47	3.58	0.88	0.88
10a	88	162-163	CHCl ₃ /petrol. ether	1.51	3.78	0.83	0.83
1b	78	256-257	Petrol. ether	1.21	3.27	0.81	0.81
3b	77	164-166	CHCl ₃ /hexane	1.39	3.71	1.12	1.03
4b	76	192-194	CHCl ₃ /EtOH	1.19	3.40	1.38	1.22
5b	83	250-251	CHCl ₃ /hexane	1.33	3.41	1.08	0.94
6b	72	178-180	Petrol. ether	1.36	3.51	0.91	0.92
10b	67	>350	CHCl ₃ /hexane	1.39	3.60	0.99	1.01
11b	72	>350	Toluene	1.46	3.27	0.81	0.88

Table 2a ¹H NMR chemical shift in ppm (multiplicity, coupling constant in Hz) of compounds 1a-5a (solvent: CDCl₃)

	1a	2a	3a	4a	5a
R	Me	Et	Et	Et	Et
X	3-i-Pr	Н	Н	Н	3-Me
Y	5-i-Pr	Н	3-MeO	5-MeO	6-i-Pr
9-H	_	1.377 (t, 8)	1.366 (t, 8)	1.376 (t, 8)	1.391 (t, 8)
$^{3}J(^{1}H-^{117/119}Sn)$		139/146	140/146	141/147	137/143
8-H	1.999 (s)	1.853 (q, 8)	1.869 (q, 8)	1.859 (q, 8)	1.864 (q, 8)
$^{2}J(^{1}H-^{117/119}Sn)$	79/82	66/69	68	66/69	64/67
3-H		7.000 (dd, 8, 1)	_	6.931 (d, 9)	
4-H	7.320 (d, 2)	7.492 (ddd, 8, 8, 2)	7.077 (dd, 8, 2)	7.114 (dd, 9, 3)	7.274 (d, 8)
5-H	_	6.929 (ddd, 8, 8, 1)	6.867 (dd, 8, 8)	_	6.863 (d, 8)
6-H	7.736 (d, 2)	8.020 (dd, 8, 2)	7.615 (dd, 8, 2)	7.448 (d, 3)	_ ``´
3-CH	2.904 (se, 7)				_
3-CH ₃	1.283 (d, 7)		3.92 (bs)	_	2.251 (s)
5- or 6-CH	3.384 (se, 7)		_	_	4.143 (se, 7)
5- or 6-CH ₃	1.283 (d, 7)	_	_	3.820 (s)	1.263 (d, 7)
2-OH	10.7 (bs)	10.6 (bs)	10.8 (bs)	10.2 (bs)	11.5 (bs)

Abbreviations: b, broad; d, doublet; q, quartet; s, singlet; se, septet; t, triplet.

Table 2b ¹H NMR chemical shift in ppm (multiplicity, coupling constant in Hz) of compounds 6a-10a (solvent: CDCl₃)

	6a	7a	8a	9a	10a
R	Et	Et	Et	Et	Et
X	3-i-Pr	H	Н	Н	4.5 D
Y	5-i-Pr	5-Me	5-F	5-Cl	4,5-Benzo
9-H	1.398 (t, 8)	1.366 (t, 8)	1,374 (t, 8)	1.372 (t, 8)	1.426 (t, 8)
$^{3}J(^{1}H-^{117/119}Sn)$	140/146	139/146	140/146	140/147	140/146
8-H	1.854 (q, 8)	1.835 (q, 8)	1.866 (q, 8)	1.857 (q, 8)	1.938 (q, 8)
$^{2}J(^{1}H-^{117/119}Sn)$	69	69	68/72	59	66
3-H	_	6.895 (d, 8)	6.956 (dd, 9, 4 ^a)	6.949 (d, 9)	7.344 (s)
4-H	7.322 (d, 2)	7.290 (dd, 8, 2)	7.221 (ddd, 9, 9 ^b , 3)	7.427 (dd, 9, 3)	
6-H	7.754 (d, 2)	7.820 (d, 2)	7.677 (dd, 9 ^b , 3)	7.985 (d, 3)	8.744 (s)
3-CH	2.910 (se, 7)	_	_		
3-CH ₃	1.288 (d, 7) ^c		_	_	
5-CH	3.393 (se, 7)	_	_	_	_
5-CH ₃	1.290 (d, 7)°	2.304 (s)	_		_
Benzo	_	_	_		7.705 (d, 8)
	_			_	7.871 (d, 8)
				_	7.340 (dd, 8, 8)
			_	_	7.314 (ddd, 8, 8, 1)
2-OH	10.82 (bs)	10.38 (bs)	10.35 (bs)	10.54 (bs)	10.37 (bs)

 $^{^{}a}$ 4 $J(^{1}H^{-19}F)$. b 3 $J(^{1}H^{-19}F)$. c Assignment permutable.

Table 2c ¹H NMR chemical shift in ppm (multiplicity, coupling constant in Hz) of compounds 1b, 3b, 4b and 5b

	1b (CDCl ₃)	3b (CDCl ₃)	4b (DMSO-d ₆)	5b (CDCl ₃)
R	Me	Et	Et	Et
X	3-i-Pr	H	Н	3-Me
Y	5-i-Pr	3-MeO	5-MeO	6-i-Pr
9-H	_	1.381 (t, 8) 1.397 (t, 8)	1.110 (t, 7)	1.349 (t, 8) 1.377 (t, 8)
$^{3}J(^{1}H-^{117/119}Sn)$	_	nv	139/146	146
8-H	1.047 (s)	1.665 (q, 8)	1.300 (q, 7)	1.47-1.83 (m)
	1.110 (s)	1.743 (q, 8)		. ,
$^{2}J(^{1}H-^{117/119}Sn)$	89/92; 85	nv	89	nv
3-H		_	6.633 (d, 9)	_
4-H	7.274 (d, 2)	7.053 (d, 7)	6.815 (dd, 9, 3)	7.215 (d, 7)
5-H	_	6.87-6.89 (m)		6.818 (d, 7)
6-H	7.741 (d, 2)	7.388 (d, 7)	7.278 (d, 3)	
		7.61 (bs)		
3-CH	2.910 (se, 7)		_	_
3-CH ₃	1.269 (d, 7)	3.912 (s)		2.231 (s)
5- or 6-CH	3.374 (se, 7)	_	_	4.04-4.18 (m
5- or 6-CH ₃	1.281 (d, 7)	_	3.643 (s)	1.231 (d, 7)
2-OH	10.7 (bs)	11.2 (bs)	11.9 (bs)	11.5 (bs)
	11.4 (bs)	11.7 (bs)		• •

Abbreviations: m, complex pattern; nv, non visible.

Table 2d ¹H NMR chemical shift in ppm (multiplicity, coupling constant in Hz) of compounds 6b, 10b and 11b

	6b (CDCl ₃)	10b (DMSO-d ₆)	11b (CDCl ₃)
R	Et	Et	t-Bu
X	3-i-Pr	1.50	Н
Y	5-i-Pr	} 4,5-Benzo	5-MeO
9-H	1.404 (t, 8) 1.440 (t, 8)	1.129 (t, 8)	1.442 (s)
$^{3}J(^{1}H-^{117/119}Sn)$	nv	141	110/115
8-H	1.666 (q, 8) 1.787 (q, 8)	1.360 (q, 8)	_
$^{2}J(^{1}H-^{117/119}Sn)$	nv	82	_
3-H		7.058 (s)	6.872 (d, 9)
4-H	7.283 (s)		7.006 (dd, 9, 3
6-H	7.520 (s)	8.432 (s)	7.356 (d, 3)
3-CH	2.920 (se, 7)		
3-CH ₃	1.279 (d, 7)		
5-CH	3.389 (se, 7)		_
5-CH ₃	1.283 (d, 7)		3.754 (s)
Benzo	<u> </u>	7.543 (d, 8); 7.768 (d, 8) 7.12 (dd, 8, 8); 7.32 (dd, 8, 8)	
2-OH	11.61 (bs)	12.42 (bs)	11.30 (bs)

Table 3a ¹³C NMR chemical shift in ppm (calculated value) of compounds 1a-5a

	1a (CDCl ₃)	2a (CDCl ₃)	3a (DMSO-d ₆)	4a (CDCl ₃)	5a (CDCl ₃)
R	Me	Et	Et	Et	Et
X	3-i-Pr	Н	H	Н	3-Me
Y	5-i-Pr	Н	3-MeO	5-MeO	6-i-Pr
C-9		9.2	9.3	9.3	9.4
$^{2}J(C-Sn)$	_	50	43	nv	nv
C-8	5.6	18.9	23.0 ^b	19.1	18.6
$^{1}J(^{13}C-^{117/119}Sn)$	619/647	560/585	≈ 880 ^b	562/588	nv
C-1	111.8 (117.4)	113.0 (117.4)	115.9 (116.4)	112.4 (118.4)	111.3 (115.3)
C-2	158.0 (157.8)	162.1 (157.3)	151.8 (142.9)	152.6 (149.6)	161.4 (158.0)
C-3	136.9 (135.5)	117.0 (115.4)	148.3 (146.8)	118.9 (116.4)	124.5 (122.1)
C-4	132.0 (130.4)	136.6 (134.4)	115.9 (120.0)	125.3 (120.0)	136.2 (135.1)
C-5	139.6 (140.9)	119.7 (120.8)	117.0 (121.8)	156.6 (152.2)	117.2 (118.7)
C-6	126.3 (127.3)	132.1 (131.5)	121.8 (124.1)	113.6 (117.4)	152.0 (148.8)
C-7	179.0	178.3	172.8	178.0	179.8
3-CH	27.2	-	_	_	-
3-CH ₃	22.7		55.5	_	16.4
5- or 6-CH	33.8		_		30.7
5- or 6-CH ₃	24.4		_	56.4	24.7

Abbreviations: b, broad; nv, non visible.

the compounds exhibit broad resonances. In contrast, in DMSO solution, compounds **4b** and **10b**, insoluble in CDCl₃, exhibit only one triplet and one quartet, showing that the dimer present in chloroform is decomposed into a monomeric species involving the very nucleophilic dimethylsulfoxide as a ligand.

Compound 11b exhibits only one singlet for the di-t-butyltin moiety, which is not unexpecteed because the very bulky di-t-bultyltin is likely to hinder the formation of the dioxadistannetane ring. The ¹¹⁹Sn NMR data confirm this proposal (see below).

¹³C NMR

The ¹³C NMR spectra of compounds **1a–10a** are described in Tables 3a and 3b, those of compounds **1b**, **3b–6b**, **10b** and **11b** in Tables 3c and 3d.

The ¹³C assignments in the aromatic parts are easily achieved on the basis of DEPT spectra and incremental chemical shift rules on substituted benzene compounds.⁸ In the speical case of compounds **10a** and **10b**, which are naphthalene compounds, the aromatic ¹³C chemical shifts were assigned by comparison with those calculated for 3-hydroxy-2-naphthoic acid, as deduced from increments determined from the ¹³C spectra of naphthalene, 2-naphthoic acid and 2-naphthol.⁸

Here also, tertiary and quaternary ¹³C nuclei were discriminated from DEPT spectra. In Tables 3b and 3d, the carbons labeled C_{α} , $C_{\alpha'}$, C_{β} and $C_{\beta'}$ correspond respectively to the C-8, C-5, C-7 and C-6 of 3-hydroxy-2-naphthoic acid in the standard labeling. For compounds **4a** and **4b**, the ¹³C assignment of the tertiary ligand carbons was achieved by a $\{^1H^{-13}C\}$ 2D HETCOR spectrum of **4b**, confirming partially the assignment suggested by the incremental rules. A HETCOR spectrum of **1b** allowed the unambiguous assignment of the methyl ¹³C resonances of all the compounds, **1b**, **6b**, **1a** and **6a**, containing two isopropyl groups in positions 3 and 5 of the aromatic ligand.

The ¹³C NMR spectra of compounds of type a exhibit a single resonance for carbon-8, as expected from the ¹H NMR spectra. They fully confirm the structure proposal made for this type of compounds.

In contrast, the compounds of type **b** exhibit two signals for C-8 when chloroform is used as a solvent (1b, 3b, 5b; see Table 3c), confirming the dimeric structure proposed for compounds **b** from the ¹H NMR and previous literature data.

As in the ¹H NMR spectrum, some ¹³C resonances of compound **3b** exhibit a duplication not observed in the other compounds of type **b**. The origin of this higher degree of duplication is unclear but is compatible with some exchange

Table 3b ¹³C NMR chemical shift in ppm (calculated value) of compounds 6a-10a (solvent: CDCl₃)

	6a	7a	8a	9a	10a
R	Et	Et	Et	Et	Et
\mathbf{X}	3-i-Pr	Н	Н	Н)
Y	5-i-Pr	5-Me	5-F	5-Cl	} 4,5-Benzo
C-9	9.2	9.1	9.3	9.3	9.4
$^{2}J(C-Sn)$	43	44	43	44	44
C-8	18.8	18.8	19.1	19.2	19.3
$^{1}J(C-Sn)$	575/606	577/604	546/576	554/580	556/581
C-1	111.9 (117.4)	112.5 (117.3)	113.1 (119.0) ^a	114.2 (118.8)	114.9 (120.8)
C-2	158.0 (152.8)	160.0 (154.2)	158.4 (152.9)	160.8 (155.4)	156.7 (153.8)
C-3	137.0 (135.5)	117.6 (115.3)	119.2 (117.0) ^a	119.6 (116.8)	112.1 (110.8)
C-4	131.8 (130.4)	137.6 (135.1)	124.2 (121.4) ^b	136.6 (134.8)	138.9 (137.6)
C-5	139.5 (140.9)	128.9 (130.0)	155.8 (155.6)°	124.7 (127.1)	127.7 (128.7)
C-6	126.5 (127.3)	131.8 (132.5)	117.2 (118.8) ^b	131.3 (132.2)	134.8 (133.9)
C-7	179.1	178.5	177.3	177.3	178.2
3-CH	27.3			C_{α} :	129.7 (130.1)
3-CH ₃	22.7	_		$C_{\alpha'}$:	126.8 (127.2)
5- or 6-CH	33.8	-		C _β :	124.4 (125.5)
5- or 6-CH ₃	24.4	_		$\mathbf{C}_{\mathbf{\beta}'}$:	129.7 (129.9)

 $^{^{}a}$ $^{3}J(^{13}C-^{19}F) = 7$. b $^{2}J(^{13}C-^{19}F) = 24$. c $^{1}J(^{13}C-^{19}F) = 239$; $^{1}J(C-Sn)$: $^{1}J(^{13}C-^{117}Sn)$ and $^{1}J(^{13}C-^{119}Sn)$; $^{2}J(C-Sn)$: unresolved $^{2}J(^{13}C-^{117/119}Sn)$.

Table 3c ¹³C NMR chemical shift in ppm (calculated value) of compounds 1b and 3b-5b

	1b (CDCl ₃)	3b (CDCl ₃)	4b (DMSO-d ₆)	5b (CDCl ₃)
R	Me	Et	Et	Et
X	3-i-Pr	Н	Н	3-Me
Y	5-i-Pr	3-MeO	5-MeO	6-i-Pr
C-9	_	9.5; 10.0; 10.5	9.1	10.2
$^{2}J(^{13}C-^{117/119}Sn)$	_	nv	49	nv
C-8	9.6; 8.1	21.5; 23.7	19.8	20.5; 26.3
$^{1}J(^{13}C-^{119}Sn)$	741; 765	nv	nv	nv
$^{1}J(^{13}C-^{117}Sn$	711; 732	nv	nv	nv
C-1	113.6 (117.4)	115.2; 114.8 (118.4)	118.6 (118.4)	114.5 (115.3)
C-2	158.0 (152.8)	152.7 (142.9)	149.3 (149.6)	160.0 (158.0)
C-3	136.9 (135.5)	149.2 (146.8)	120.4 (116.4)	124.1 (122.1)
C-4	130.8 (130.4)	117.7 (120)	122.3 (120.0)	135.2 (135.1)
C-5	138.9 (140.9)	118.7 (121.8)	159.0 (152.2)	117.1 (118.7)
C-6	125.3 (127.3)	122.7; 124.3 (124.1)	114.1 (117.4)	151.0 (148.8)
C-7	176.7	175.8; 177.3	169.0	178.0
3-CH	27.2			29.9
3-CH ₃	22.7	56.6	_	24.9
5- or 6-CH	33.8	_		_
5- or 6-CH ₃	24.6		55.1	16.4

Abbreviation: nv, not visible.

Table 3d ¹³C NMR chemical shift in ppm (calculated value) of compounds 6b, 10b and 11b

	6b (CDCl ₃)	10b (DMSO-d ₆)	11b (CDCl ₃)
R	Et	Et	t-Bu
X Y	3-i-Pr) 5-i-Pr)	4,5-Benzo	H 5-MeO
C-9	9.9; 10.3	9.3	30.6
$^{2}J(C-Sn)$	nv	50	nv
C-8	21.8	20.3	42.3
¹ J(C-Sn)	nv	780/840	550/580
C-1	113.8 (117.4)	124.2 (120.8)	116.5 (118.4)
C-2	158.2 (152.8)	161.2 (153.8)	156.4 (149.6)
C-3	137.0 (135.5)	113.9 (110.8)	118.4 (116.4)
C-4	130.7 (130.4)	136.5 (137.6)	122.4 (120.0)
C-5	138.9 (140.9)	125.6 (128.7)	152.3 (152.2)
C-6	125.7 (127.3)	132.7 (133.9)	114.6 (117.5)
C-7	176.9	168.5	176.5
3-CH	27.2	_	_
3-CH ₃	22.8		
5-CH	33.9	-	_
5-CH ₃	24.6		56.2
\mathbf{C}_{α}		128.4 (130.1)	
$C_{\alpha'}$		124.7 (127.2)	_
C _B	_	121.5 (125.5)	_
C_{β} $C_{\beta'}$	_	126.8 (129.9)	

Abbreviation: nv, non visible.

phenomenon. This exchange should be rapid on the NMR time scale for the single averaged resonances but slow for those not yet averaged and still duplicated. The presence of other species in a $CDCl_3$ solution of **3b** is evidenced by a third broad C-9 resonance (9.50 ppm) and by the ¹¹⁹Sn spectrum (see below).

In the DMSO solutions of compounds **4b** and **10b**, only one signal is observed for both C-8 and C-9 carbons, confirming the ¹H NMR observations. For compound **6b**, only one signal is found for C-8, but two are clearly visible for C-9. Again, only one signal is found for the C-8 of compound **11b**, as expected from proton NMR data.

¹¹⁹Sn NMR

The ¹¹⁹Sn NMR spectra of a series of selected compounds are described in Table 4.

Compounds of type **a** exhibit a single resonance, in agreement with the ¹H and ¹³C NMR results. The same holds for compound **4b** in DMSO-d₆. Compound **3b** exhibits the expected two resonances with ²J(¹¹⁹Sn-O-^{117/119}Sn) satellites. However other minor resonances are also observed, that are attributed to other oligomeric species in equilibrium with the dimeric 2:2 condensation products. Likewise compounds **1b** and **6b** exhibit the two equally intense resonances with

Table 4 119Sn NMR chemical shift in ppm with respect to tetramethyltin as external standard of compounds 1a-11b (solvent: CDCl₃ except when otherwise stated

	1a	3a in DMSO-d ₆	6a	1b	3b	4b in DMSO-d ₆	6b	11b
δ	- 103	- 293	- 137	- 156	- 188	-263	- 190	- 266
	_	_	_	-162	- 199		-192	
$^{2}J(Sn-O-Sn)$		_		109	130		125	242ª

Unresolved ${}^{2}J({}^{119}Sn - O - {}^{117/119}Sn)$: error ± 4 Hz. ${}^{a}{}^{2}J({}^{119}Sn - O - {}^{117}Sn)$ only.

Table 5a Relative intensities of fragment-ions observed in the monoisotopic mass spectra of compounds 1a-10a

	1a	2a	3a	4a	5a	6a	7a	8a	9a	10a
Sn ^{·+}		17	13	11		_	6	6		_
HSn ⁺	_	_	12	9		_		8		_
HOSn ⁺		48	50	35	11	_	_	45	70	48
EtSn ⁺		27				_	_	30	_	_
Et ₂ SnH ⁺		18	20	37			18	47	28	17
ArOSn ⁺					15	29				
ArCOOSn+	_	52	54	54			22		77	
ArOH(COO)Sn+	44	100	84	65		44	89	77	76	36
ArOH(COO)SnR ₂ ⁺	100	69	100	100	100	100	100	100	100	100
ArOH(COO)SnR ₂ O ⁺	_	_			_	53			_	_
Miscellaneous	_	a			_		_	_	_	_

^a Fragment-ions at m/z = 241 (C₇H₅O₂Sn⁺, 62%) and 228 (ArSnH⁺, 29%) have also been observed.

Table 5b Relative intensities of fragment-ions observed in the monoisotopic mass spectra of compounds 1b, 3b-6b, 10b and 11b

	1b	3b	4b	5b	6b	10b	11b
Sn ^{·+}	_	13	24	13	6		
HSn ⁺	_	9	21	9	4		_
HOSn ⁺	_	46	90	66	16	18	12
EtSn ⁺			55	47	7		
Et ₂ SnH ⁺	_	44	100	100	17	23	_
ArOSn ⁺	_			82			_
ArCOOSn ⁺	_	41	92		_		13
ArOH(COO)Sn ⁺	16	28	75	_	54	18	20
ArOH(COO)SnR ₂ ⁺	20	100	95	57	53	100	100
ArOH(COO)SnR ₂ O ⁺	100			_			_
Miscellaneous	а	b	_	c	d		e

^a A fragment-ion at m/z = 357 (ArOH(COO)MeSnH⁺, 68%) has also been observed. ^b Fragment-ions at m/z = 193 (Et₂MeSn⁺, 43%) and 151 (EtSnH₂⁺, 22%) have also been observed. ^c Fragment-ions at m/z = 221 (i-PrEt₂Sn⁺, 38%) and 237 (3%) have also been observed. ^d Fragment-ions at m/z = 355 (ArOSnEt₂⁺, 24%) and 237 (100%) have also been observed. ^c Fragment-ions at m/z = 345 (ArOH(COO)t-BuSnH⁺, 24%) and 179 (t-BuSnH₂⁺, 32%) have also been observed.

the unresolved ${}^2J({}^{119}Sn-O-{}^{117/119}Sn)$ satellites characteristic for the proposed 2:2 distannoxanes. Compound 11b is a monomeric 2:2 distannoxane as evidenced by the single 119Sn resonance $^{2}J(^{119}Sn-O-^{117}Sn)$ exhibiting a satellite. Compounds 3a and 4b, that are only very poorly soluble in CDCl3, exhibit a single resonance in DMSO-d₆ at much higher fields. This is attributed to six-coordinate monomeric species involving the nucleophilic DMSO-d₆ as ligands. According to the monomeric structure proposed for compounds of type a, a single resonance is observed for compound 6a.

Mass spectral data

The mass spectra of compounds 1a-10a are given in Table 5a, and those of compounds 1b, 3b-6b, 10b and 11b in Table 5b.

For compounds of type \mathbf{a} , the fragment-ion ArOH(COO)SnR₂⁺ is the base peak or an intense one. ArOH(COO)Sn⁺ is also generally quite intense. For compounds of type \mathbf{b} , ArOH(COO)SnR₂⁺ is also an intense peak, but Et₂SnH⁺ is sometimes the base peak.

Table 6	ID_{50}	values	of	selected	diorganotin(IV)	disalicylates
(X-Y-2-C)	OH-C ₆ I	H ₂ COO) ₂	SnR ₂ ,	3a, 5a, 8a	and 9a, and bis)dior	rganosalicyla-
totin) ox	cides {[2	X-Y-OH-	C_6H_2	COOSnR ₂]	₂ O} ₂ , 3b and 4b	

				ID ₅₀ (ng cm ⁻³) against:		
Compd	RR′	X	Y	MCF-7	WiDr	
3a	Et ₂	Н	3-MeO	980	2495	
n-Bu ₂ Sn ana	log of 3aa	Н	3-MeO	105	474	
5a	\mathbf{Et}_2	3-Me	6-i-Pr	1131	4985	
8a	Et_2	Н	5-F	850	2361	
9a	Et_2	H	5-Cl	675	1680	
n-Bu ₂ Sn ana	log of 9aa	Н	5-Cl	89	319	
3b	Et ₂	H	3-MeO	524	1002	
n-Bu ₂ Sn ana	log of 3bb	Н	3-MeO	45	323	
4b	Et ₂	Н	5-MeO	2236	4806	
n-Bu ₂ Sn ana	log of 4bb	H	5-MeO	29	122	
11b	t-Bu ₂	Н	5-MeO	38	163	

The activity of some of the di-n-butyltin analogs is given for comparison.

ArOH(COO)Sn⁺ is also generally present. All the fragment-ions observed are compatible with the fragmentation rules described in the literature.⁹

In vitro antitumor screening

Some of the compounds were screened *in vitro* against MCF-7, a human mammary tumor cell line, and WiDr, a human colon carcinoma cell line.

The toxicity of the compounds against the cell lines was assessed according to the PIT method as essentially described by Van Lambalgen and Lelleveld);12 the cells were maintained in a continuous logarithmic culture in Dulbecco's medium supplemented with 10% fetal calf serum, penicil- $(100 \text{ i.u. cm}^{-3})$ streptomycin and (100 μg cm⁻³); they were mildly tryptinized for passage and for use in experiments. The cells were plated in the wells of flat-bottomed microtiter plates and incubated at 37 °C. After two days the compounds were added to wells. Of each compound 12 concentrations were tested in duplicate. Serial control dilutions were made with the vehicle in the absence of drugs. After further incubation for five days, the experiments were terminated by the addition of saline containing propidium iodide (0.02%, w/w), 0.3% drawing ink and 0.5% Triton X-100. After standing overnight at 4 °C, the plates were evaluated by measuring fluorescence intensity under halogen light.

For each compound the ID₅₀ value (the concentration of compound inhibiting cell growth by 50%) was calculated.

Because they are much less active than the corresponding di-n-butyltin derivatives² (see Table 6), the other diorganotin compounds reported in this paper were not tested. The observation that diethyltin derivatives are less active than the corresponding di-n-butyl ones is in strong contrast with previous screening results reported in the literature.^{4,5} We attribute this lower activity of our diethyltin derivatives to their general poorer solubility compared with the di-nbutyltin ones. It should be outlined, however, that the previous screenings were performed in vivo on the murine leukemiae P388 and L1210. Therefore the activity inversion observed between the diethyl- and di-n-butyl-tin compounds should be considered with caution. The only di-t-butyltin compound tested exhibits an activity as high as that of the di-n-butyltin compound. Therefore such compounds deserve further studies.

REFERENCES

- Bouâlam, M, Willem, R, de Vos, D, Lelieveld, P and Gielen, M Appl. Organomet. Chem., 1990, 4: 335
- Bouâlam, M, Gielen, M, Meriem, A, de Vos, D and Willem, R Pharmachemie BV, Eur. Pat. 90202316.7-, 21 Sept. 1990

^a From Ref. 2. ^b From Ref. 1.

- 3. Bouâlam, M, Willem, R, Biesemans, M, Mahieu, B and Gielen, M Heteroatom. Chem., 1991, 4: 447
- Crowe, A Tin compounds and their potential as pharmaceutical agents. In: Tin-Based Antitumour Drugs, Gielen, M (ed.), Springer Verlag, 1990, pp 201-218
- Crowe, A The antitumour activity of tin compounds. In: Metal-Based Antitumour Drugs, vol 1, Gielen, M (ed.), Freund, Tel Aviv, 1989, pp 103-149
- Lockhart, TP, Calabrese, JC and Davidson, F Organometallics, 1987, 6: 2479
- Bouâlam, M, Willem, R, Biesemans, M, Mahieu, B, Meunier-Piret, J and Gielen, M Main Group Met. Chem., 1991, 14: 37
- Kalinowski, HO, Berger, S and Braun, S Carbon-13 NMR Spectroscopy, John Wiley, Chichester, 1988
- Gielen, M, Simon, S and Van de Steen, M Org. Mass Spectrom., 1983, 18: 451
- 10. M Gielen, Org. Mass Spectrom., 1983, 18: 453
- 11. M. Gielen, Bull. Soc. Chim. Belg., 1985, 94: 1075
- Van Lambalgen, R and Lelleveld, P Invest. New Drugs, 1987, 5: 161